Order stars and stiff integrators
نویسندگان
چکیده
منابع مشابه
Order Stars and Stii Integrators
Order stars, introduced in 25], have become a fundamental tool for the understanding of order and stability properties of numerical methods for stii diierential equations. This survey retraces their discovery and their principal achievements. We also sketch some later extensions and describe some recent developments. Stii diierential equations rst became popular mainly during the fties; for an ...
متن کاملParallel High-Order Integrators
In this work we discuss a class of defect correction methods which is easily adapted to create parallel time integrators for multi-core architectures and is ideally suited for developing methods which can be order adaptive in time. The method is based on Integral Deferred Correction (IDC), which was itself motivated by Spectral Deferred Correction by Dutt, Greengard and Rokhlin (BIT-2000). The ...
متن کاملMean-square A-stable diagonally drift-implicit integrators of weak second order for stiff Itô stochastic differential equations
We introduce two drift-diagonally-implicit and derivative-free integrators for stiff systems of Itô stochastic differential equations with general non-commutative noise which have weak order 2 and deterministic order 2, 3, respectively. The methods are shown to be mean-square A-stable for the usual complex scalar linear test problem with multiplicative noise and improve significantly the stabil...
متن کاملHigh-order passive photonic temporal integrators.
We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design app...
متن کاملConstruction of higher order symplectic integrators
For Hamiltonian systems of the form H= T(p) + V(q) a method is shown to construct explicit and time reversible symplectic integrators of higher order. For any even order there exists at least one symplectic integrator with exact coefficients. The simplest one is the 4th order integrator which agrees with one found by Forest and by Ned. For 6th and 8th orders, symplectic integrators with fewer s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2000
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(00)00461-1